Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration

ثبت نشده
چکیده

We present a bottom-up aggregation approach to image segmentation. Beginning with an image, we execute a sequence of steps in which pixels are gradually merged to produce larger and larger regions. In each step we consider pairs of adjacent regions and provide a probability measure to assess whether or not they should be included in the same segment. Our probabilistic formulation takes into account intensity and texture distributions in a local area around each region. It further incorporates priors based on the geometry of the regions. Finally, posteriors based on intensity and texture cues are combined using a mixture of experts formulation. This probabilistic approach is integrated into a graph coarsening scheme providing a complete hierarchical segmentation of the image. The algorithm complexity is linear in the number of the image pixels and it requires almost no user-tuned parameters. We test our method on a variety of gray scale images and compare our results to several existing segmentation algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of Domain Specific Information in the Form of Color Homogeneity into MRF Based Image Segmentation

We propose a Markov Random Field based image segmentation method which integrates domain specific information into MRF energy. The proposed segmentation method assumes that there is no labeled training set, but some priori general information referred as domain specific information about the dataset, is available. Domain specific information is received from a domain expert and formalized by a ...

متن کامل

Top-Down Unsupervised Image Segmentation (it sounds like oxymoron, but actually it is not)

Pattern recognition is generally assumed as an interaction of two inversely directed image-processing streams: the bottom-up information details gathering and localization (segmentation) stream, and the top-down information features aggregation, association and interpretation (recognition) stream. Inspired by recent evidence from biological vision research and by the insights of Kolmogorov Comp...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Segmentation Graph Hierarchies

The region’s internal properties (color, texture, ...) help to identify them and their external relations (adjacency, inclusion, ...) are used to build groups of regions having a particular consistent meaning in a more abstract context. Low-level cue image segmentation in a bottom-up way, cannot and should not produce a complete final “good” segmentation. We present a hierarchical partitioning ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006